Brightness assimilation in bullseye displays

نویسندگان

  • Daniel Bindman
  • Charles Chubb
چکیده

In simultaneous brightness contrast displays, a gray target square G(B) bordered by black appears brighter than an identical gray target square G(W) bordered by white. Here we demonstrate that this effect can be reversed if G(B) is surrounded by bands that alternate outward from black to white, while G(W) is surrounded by bands that alternate outward from white to black. With these simple "bullseye" displays assimilation generally occurs--G(B) appears darker than G(W). Experiments 1 and 2 used a 2AFC design with a 2.2 s display duration. The results of these experiments indicate that (i) substantial assimilation occurs for target Weber contrasts (relative to the gray background) of -0.25, 0, and 0.25, but assimilation was maximal when target contrast was -0.25 and decreased as target contrast increased, (ii) assimilation effects were the same whether the width of the four surround bands was 20% of the target or 40% of the target, and (iii) assimilation occurs with as few as 2 surround-bands and the magnitude of the effect increases slightly as the number of bands increase. When experiment 1 was re-run using the method of matching (experiment 3), however, the results changed dramatically: (moderate) assimilation effects were found only when target contrast was -0.25; when target contrast was 0.25, there was a brightness contrast effect; when target contrast was 0, there was no illusion. Assimilation effects in bullseye displays are not predicted by the CSF model described in DeValois and DeValois [Spatial Vision, Oxford University Press, New York, 1988], the anchoring model of Gilchrist et al. [Psychological Review, 106(4) (1999) 795], or Blakeslee and McCourt's [Vision Research 39 (1999) 4361] ODOG model. We propose that this assimilation effect is the result of a contrast inhibition mechanism similar to that proposed by Chubb et al. [Proceedings for the National Academy of Science, vol. 86, 1989, p. 9631] to underlie contrast effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Neurocomputational account of the role of contour facilitation in brightness perception

A new filling-in model is proposed in order to account for challenging brightness illusions, where inducing background elements are spatially separated from the gray target such as dungeon, cube and grating illusions, bullseye display and ring patterns. This model implements the simple idea that neural response to low-contrast contour is enhanced (facilitated) by the presence of collinear or pa...

متن کامل

Edge integration and the perception of brightness and darkness.

How do induced brightness and darkness signals from local and remote surfaces interact to determine the final achromatic color percept of a target surface? An emerging theory of achromatic color perception posits that brightness and darkness percepts are computed by weighting and summing the induction signals generated at edges in a scene. This theory also characterizes how neighboring edges in...

متن کامل

A comment on "assimilation of achromatic color cannot explain the brightness effects in the achromatic neon effect" by Marc K Albert.

in the achromatic neon effect'' by Marc K Albertô Albert (1998) describes a number of visual displays, which he uses to argue against current models of neon color spreading. He particularly emphasizes models which I and my colleagues have developed. He erroneously concludes that our models cannot explain the percepts that are generated by these displays. I am writing to set the record straight....

متن کامل

Assimilation of GOES Infrared Brightness Temperatures with an Ensemble Kalman Filter: Track and Intensity Impacts for Hurricane

Data assimilation using ensemble Kalman filters (EnKF) has led to significant improvements in atmospheric state estimation. The advantages of EnKF over common operational assimilation methods such as three-dimensional variational (3D-VAR) methods and its impressive performance in the assimilation of radar data at convective scales have led to its increasing popularity. While most previous studi...

متن کامل

Mesoscale Variational Assimilation of Profiling Radiometer Data

Retrieved profiles of temperature, water vapor, and cloud liquid water are obtained through neural net inversions of the brightness temperatures, where the neural net is trained using radiosonde soundings and corresponding forward modeled brightness temperatures. An observation operator has also been developed for the direct assimilation of the measured brightness temperatures, using the forwar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Vision Research

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2004